

COMPARING THE MONOCHROMATIC TL RESPONSE OF A HIGH SENSITIVITY NATURAL QUARTZ IRRADIATED WITH β AND γ RAYS

CAICEDO MATEUS, $F¹$, ASFORA, V. K.², and GUZZO, P. L.³

¹Graduate Prog. of Energy and Nuclear Technologies, UFPE, 50740-545 Recife, PE, Brazil, fania.mateus@ufpe.br ²Department of Nuclear Energy, UFPE, 50740-545 Recife, PE, Brazil ³Department of Mining Engineering, UFPE, 50740-530 Recife, PE, Brazil

Introduction: The dating protocols employed to determine the equivalent dose are usually performed at higher dose-rate than those found in geological and archaeological sites. It is worth thinking that the thermoluminescence (TL) response does not depend only on total dose, but also on the dose-rate. Some studies using quartz have shown that TL response is not completely independent of the dose-rate, and the TL emissions related to high temperature glow peaks change in a different manner with the increase of the dose-rate [1,2]. Since the majority of dating protocols use β radiation, further studies are desirable in order to consider the dose-rate effect using different radiation sources. To progress in this direction, the effect of the dose-rate was investigated in a single crystal showing a high TL sensitivity above 200 °C.

Materials and Methods: Six single crystal samples used in previous studies [3,4] were chosen. It was defined a new starting point by submitting all samples to 700 °C/3 h (Zeroed condition, Z). Three samples were resensitized (ReS), using the combined effect of irradiation with 30 kGy (${}^{60}Co$; 2.14 kGy/h) and heating at 400 °C/1 h. The remaining samples were kept in the Z condition. The TL curves were recorded from 25 to 425 °C $(2 °C/s)$ using a lexsyg SMART reader equipped with an internal β particle source ($\frac{90}{ST}$ Sr/ $\frac{90}{Y}$). The TL curves were acquired with a detection window centered in the violet region (411(51) nm) [4]. The samples were irradiated with test-doses of 10 mGy of gamma rays $(^{137}Cs$, 0.008 mGy/s; ${}^{60}Co$, 0.299 mGy/s) and 63 mGy of β particles $(^{90}Sr/^{90}Y, ~63 \text{ mGy/s})$, respectively. To avoid the thermal fading of the first peak, the γ irradiated samples were stored in an ice-bath. The TL reading was repeated three times for each sample. The glow curves were scrutinized using a glow curve deconvolution method based on first-order kinetics.

Results: Comparing the glow curves shown in Fig. 1, it is observed that the violet emissions changed significantly after sensitization. The well-defined peak nearby to 260 °C in ReS samples is different than the broad signals in Z samples. The deconvolution with six components, shows that the trapping parameters are re-

markably similar between glow curves registered with different radiation sources. The activation energies are systematically higher for ReS samples. The sensitization created a remarkable increase in TL signal above 350 °C. Since the background was systematically removed, this signal seems to be associated with deep traps, which is observed only in ReS samples irradiated with the minor dose-rate (^{137}Cs) . This strong emission was also verified with test-dose of 1 mGy. The net TL intensities of the main peaks and the integral area of the six components, for Z and ReS samples, show that the first peak exhibits higher intensity for γ rays with higher dose rate $(60Co)$. The components above to 300 °C were more intense at lower dose-rates. The intensity of the two components responsible for the sensitized peak were also affected by radiation source and dose-rate.

Fig. 1: Net TL glow curves for Z (a) and ReS (b) quartz samples irradiated with β and γ sources.

Conclusion: The same set of trap depths were found for Z and ReS samples irradiated with β and γ rays. Besides the creation of the strong peak at \sim 260 °C, the sensitization process caused a significant reduction in the intrinsic thermal fading of the first peak. The population of the deep traps shows a dose-rate dependence.

References:

1. G. Valladas, J. Ferreira, *Nuclear Instruments and Method*s **175**, 216–218 (1980).

2. R. Chen, P.L. Leung, *Journal of Physics D: Applied Physics* **33**, 846–850 (2000).

3. P.L. Guzzo, L.B. de Souza, V.S.M. Barros, H.J. Khoury, *Journal of Luminescence* **188**, 118-128 (2017). 4. F.D. Caicedo, V.K. Asfora, P.L. Guzzo, V.S.M. Barros, *Nuclear Instruments and Methods in Physics Research* **486**, 37-47 (2021).